3.276 \(\int \frac{\sec ^2(e+f x)}{\sqrt{a+b \sec (e+f x)} (c+c \sec (e+f x))} \, dx\)

Optimal. Leaf size=214 \[ \frac{2 a \sqrt{a+b} \cot (e+f x) \sqrt{\frac{b (1-\sec (e+f x))}{a+b}} \sqrt{-\frac{b (\sec (e+f x)+1)}{a-b}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (e+f x)}}{\sqrt{a+b}}\right ),\frac{a+b}{a-b}\right )}{b c f (a-b)}-\frac{\sqrt{\frac{1}{\sec (e+f x)+1}} \sqrt{a+b \sec (e+f x)} E\left (\sin ^{-1}\left (\frac{\tan (e+f x)}{\sec (e+f x)+1}\right )|\frac{a-b}{a+b}\right )}{c f (a-b) \sqrt{\frac{a+b \sec (e+f x)}{(a+b) (\sec (e+f x)+1)}}} \]

[Out]

(2*a*Sqrt[a + b]*Cot[e + f*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[e + f*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b
*(1 - Sec[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[e + f*x]))/(a - b))])/((a - b)*b*c*f) - (EllipticE[ArcSin[Tan
[e + f*x]/(1 + Sec[e + f*x])], (a - b)/(a + b)]*Sqrt[(1 + Sec[e + f*x])^(-1)]*Sqrt[a + b*Sec[e + f*x]])/((a -
b)*c*f*Sqrt[(a + b*Sec[e + f*x])/((a + b)*(1 + Sec[e + f*x]))])

________________________________________________________________________________________

Rubi [A]  time = 0.360072, antiderivative size = 214, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.086, Rules used = {3976, 3832, 3968} \[ \frac{2 a \sqrt{a+b} \cot (e+f x) \sqrt{\frac{b (1-\sec (e+f x))}{a+b}} \sqrt{-\frac{b (\sec (e+f x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (e+f x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{b c f (a-b)}-\frac{\sqrt{\frac{1}{\sec (e+f x)+1}} \sqrt{a+b \sec (e+f x)} E\left (\sin ^{-1}\left (\frac{\tan (e+f x)}{\sec (e+f x)+1}\right )|\frac{a-b}{a+b}\right )}{c f (a-b) \sqrt{\frac{a+b \sec (e+f x)}{(a+b) (\sec (e+f x)+1)}}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[e + f*x]^2/(Sqrt[a + b*Sec[e + f*x]]*(c + c*Sec[e + f*x])),x]

[Out]

(2*a*Sqrt[a + b]*Cot[e + f*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[e + f*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b
*(1 - Sec[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[e + f*x]))/(a - b))])/((a - b)*b*c*f) - (EllipticE[ArcSin[Tan
[e + f*x]/(1 + Sec[e + f*x])], (a - b)/(a + b)]*Sqrt[(1 + Sec[e + f*x])^(-1)]*Sqrt[a + b*Sec[e + f*x]])/((a -
b)*c*f*Sqrt[(a + b*Sec[e + f*x])/((a + b)*(1 + Sec[e + f*x]))])

Rule 3976

Int[csc[(e_.) + (f_.)*(x_)]^2/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_
))), x_Symbol] :> -Dist[a/(b*c - a*d), Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[c/(b*c - a*d),
 Int[(Csc[e + f*x]*Sqrt[a + b*Csc[e + f*x]])/(c + d*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && N
eQ[b*c - a*d, 0] && (EqQ[a^2 - b^2, 0] || EqQ[c^2 - d^2, 0])

Rule 3832

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*Rt[a + b, 2]*Sqr
t[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Csc[e + f*x]))/(a - b))]*EllipticF[ArcSin[Sqrt[a + b*Csc[e +
f*x]]/Rt[a + b, 2]], (a + b)/(a - b)])/(b*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3968

Int[(csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)])/(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)
), x_Symbol] :> -Simp[(Sqrt[a + b*Csc[e + f*x]]*Sqrt[c/(c + d*Csc[e + f*x])]*EllipticE[ArcSin[(c*Cot[e + f*x])
/(c + d*Csc[e + f*x])], -((b*c - a*d)/(b*c + a*d))])/(d*f*Sqrt[(c*d*(a + b*Csc[e + f*x]))/((b*c + a*d)*(c + d*
Csc[e + f*x]))]), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && EqQ[c^2 - d^
2, 0]

Rubi steps

\begin{align*} \int \frac{\sec ^2(e+f x)}{\sqrt{a+b \sec (e+f x)} (c+c \sec (e+f x))} \, dx &=\frac{a \int \frac{\sec (e+f x)}{\sqrt{a+b \sec (e+f x)}} \, dx}{(a-b) c}+\frac{c \int \frac{\sec (e+f x) \sqrt{a+b \sec (e+f x)}}{c+c \sec (e+f x)} \, dx}{-a c+b c}\\ &=\frac{2 a \sqrt{a+b} \cot (e+f x) F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (e+f x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (e+f x))}{a+b}} \sqrt{-\frac{b (1+\sec (e+f x))}{a-b}}}{(a-b) b c f}-\frac{E\left (\sin ^{-1}\left (\frac{\tan (e+f x)}{1+\sec (e+f x)}\right )|\frac{a-b}{a+b}\right ) \sqrt{\frac{1}{1+\sec (e+f x)}} \sqrt{a+b \sec (e+f x)}}{(a-b) c f \sqrt{\frac{a+b \sec (e+f x)}{(a+b) (1+\sec (e+f x))}}}\\ \end{align*}

Mathematica [A]  time = 5.11181, size = 156, normalized size = 0.73 \[ \frac{4 \cos ^4\left (\frac{1}{2} (e+f x)\right ) \sqrt{\frac{a \cos (e+f x)+b}{(a+b) (\cos (e+f x)+1)}} \left ((a+b) E\left (\sin ^{-1}\left (\tan \left (\frac{1}{2} (e+f x)\right )\right )|\frac{a-b}{a+b}\right )-2 a \text{EllipticF}\left (\sin ^{-1}\left (\tan \left (\frac{1}{2} (e+f x)\right )\right ),\frac{a-b}{a+b}\right )\right )}{c f (b-a) \sqrt{\frac{\cos (e+f x)}{\cos (e+f x)+1}} (\cos (e+f x)+1)^2 \sqrt{a+b \sec (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[e + f*x]^2/(Sqrt[a + b*Sec[e + f*x]]*(c + c*Sec[e + f*x])),x]

[Out]

(4*Cos[(e + f*x)/2]^4*Sqrt[(b + a*Cos[e + f*x])/((a + b)*(1 + Cos[e + f*x]))]*((a + b)*EllipticE[ArcSin[Tan[(e
 + f*x)/2]], (a - b)/(a + b)] - 2*a*EllipticF[ArcSin[Tan[(e + f*x)/2]], (a - b)/(a + b)]))/((-a + b)*c*f*Sqrt[
Cos[e + f*x]/(1 + Cos[e + f*x])]*(1 + Cos[e + f*x])^2*Sqrt[a + b*Sec[e + f*x]])

________________________________________________________________________________________

Maple [A]  time = 0.312, size = 224, normalized size = 1.1 \begin{align*}{\frac{ \left ( 1+\cos \left ( fx+e \right ) \right ) ^{2} \left ( -1+\cos \left ( fx+e \right ) \right ) }{fc \left ( a-b \right ) \left ( a\cos \left ( fx+e \right ) +b \right ) \left ( \sin \left ( fx+e \right ) \right ) ^{2}}\sqrt{{\frac{a\cos \left ( fx+e \right ) +b}{\cos \left ( fx+e \right ) }}}\sqrt{{\frac{\cos \left ( fx+e \right ) }{1+\cos \left ( fx+e \right ) }}}\sqrt{{\frac{a\cos \left ( fx+e \right ) +b}{ \left ( a+b \right ) \left ( 1+\cos \left ( fx+e \right ) \right ) }}} \left ( 2\,{\it EllipticF} \left ({\frac{-1+\cos \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }},\sqrt{{\frac{a-b}{a+b}}} \right ) a-a{\it EllipticE} \left ({\frac{-1+\cos \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }},\sqrt{{\frac{a-b}{a+b}}} \right ) -b{\it EllipticE} \left ({\frac{-1+\cos \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }},\sqrt{{\frac{a-b}{a+b}}} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(f*x+e)^2/(c+c*sec(f*x+e))/(a+b*sec(f*x+e))^(1/2),x)

[Out]

1/c/f/(a-b)*(1/cos(f*x+e)*(a*cos(f*x+e)+b))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*(1/(a+b)*(a*cos(f*x+e)+b)/
(1+cos(f*x+e)))^(1/2)*(1+cos(f*x+e))^2*(-1+cos(f*x+e))*(2*EllipticF((-1+cos(f*x+e))/sin(f*x+e),((a-b)/(a+b))^(
1/2))*a-a*EllipticE((-1+cos(f*x+e))/sin(f*x+e),((a-b)/(a+b))^(1/2))-b*EllipticE((-1+cos(f*x+e))/sin(f*x+e),((a
-b)/(a+b))^(1/2)))/(a*cos(f*x+e)+b)/sin(f*x+e)^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (f x + e\right )^{2}}{\sqrt{b \sec \left (f x + e\right ) + a}{\left (c \sec \left (f x + e\right ) + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^2/(c+c*sec(f*x+e))/(a+b*sec(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(sec(f*x + e)^2/(sqrt(b*sec(f*x + e) + a)*(c*sec(f*x + e) + c)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{b \sec \left (f x + e\right ) + a} \sec \left (f x + e\right )^{2}}{b c \sec \left (f x + e\right )^{2} +{\left (a + b\right )} c \sec \left (f x + e\right ) + a c}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^2/(c+c*sec(f*x+e))/(a+b*sec(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*sec(f*x + e) + a)*sec(f*x + e)^2/(b*c*sec(f*x + e)^2 + (a + b)*c*sec(f*x + e) + a*c), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{\sec ^{2}{\left (e + f x \right )}}{\sqrt{a + b \sec{\left (e + f x \right )}} \sec{\left (e + f x \right )} + \sqrt{a + b \sec{\left (e + f x \right )}}}\, dx}{c} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)**2/(c+c*sec(f*x+e))/(a+b*sec(f*x+e))**(1/2),x)

[Out]

Integral(sec(e + f*x)**2/(sqrt(a + b*sec(e + f*x))*sec(e + f*x) + sqrt(a + b*sec(e + f*x))), x)/c

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (f x + e\right )^{2}}{\sqrt{b \sec \left (f x + e\right ) + a}{\left (c \sec \left (f x + e\right ) + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^2/(c+c*sec(f*x+e))/(a+b*sec(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(sec(f*x + e)^2/(sqrt(b*sec(f*x + e) + a)*(c*sec(f*x + e) + c)), x)